Skip to main content
Log in

Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides are 2D structures with remarkable electronic, chemical, optical and mechanical properties. Monolayer and crystal properties of these structures have been extensively investigated, but a detailed understanding of the properties of their few-layer structures are still missing. In this work we investigated the mechanical differences between monolayer and multilayer WSe2 and MoSe2, through fully atomistic molecular dynamics simulations (MD). It was observed that single layer WSe2/MoSe2 deposited on silicon substrates have larger friction coefficients than 2, 3 and 4 layered structures. For all considered cases it is always easier to peel off and/or to fracture MoSe2 structures. These results suggest that the interactions between first layer and substrate are stronger than interlayer interactions themselves. Similar findings have been reported for other nanomaterials and it has been speculated whether this is a universal-like behavior for 2D layered materials. We have also analyzed fracture patterns. Our results show that fracture is chirality dependent with crack propagation preferentially perpendicular to W(Mo)-Se bonds and faster for zig-zag-like defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Bradley, J.-C. P. Gabriel, and G. Grüner, Nano Lett. 3, 1353 (2003).

    Article  CAS  Google Scholar 

  2. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, Nature Nano. 9, 768 (2014).

    Article  CAS  Google Scholar 

  3. F. Schwierz, Nature Nano. 5, 487 (2010).

    Article  CAS  Google Scholar 

  4. Y. Sun and J. A. Rogers, Adv. Mater. 19, 1897 (2007).

    Article  CAS  Google Scholar 

  5. P. Johari and V. B. Shenoy, ACS Nano 6, 5449 (2012).

    Article  CAS  Google Scholar 

  6. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, 8, 899 (2014).

  7. K. F. Mak and J. Shan, Nature Photonics 10, 216 (2016).

    Article  CAS  Google Scholar 

  8. D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8, 1102 (2014).

    Article  CAS  Google Scholar 

  9. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature Nano. 7, 699 (2012).

    Article  CAS  Google Scholar 

  10. M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nature Chem. 5, 263 (2013).

    Article  Google Scholar 

  11. W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, and J. D. Lee, Phys. Rev. B 85, 33305 (2012).

    Article  Google Scholar 

  12. J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa, T. Takenobu, and L.-J. Li, ACS Nano 8, 923 (2014).

    Article  CAS  Google Scholar 

  13. C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, Nature Mater. 13, 1096 (2014).

    Article  CAS  Google Scholar 

  14. Y. L. Huang, Z. Ding, W. Zhang, Y.-H. Chang, Y. Shi, L.-J. Li, Z. Song, Y. J. Zheng, D. Chi, S. Y. Quek, and A. T. S. Wee, Nano Lett. 16, 3682 (2016).

    Article  CAS  Google Scholar 

  15. A. A. Mitioglu, P. Plochocka, Á. del Aguila, P. C. M. Christianen, G. Deligeorgis, S. Anghel, L. Kulyuk, and D. K. Maude, Nano Lett. 15, 4387 (2015).

    Article  CAS  Google Scholar 

  16. M. Asadi, K. Kim, C. Liu, A. V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J. M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R. F. Klie, J. Abiade, L. A. Curtiss, and A. Salehi-Khojin, Science 353, 467 (2016).

    Article  CAS  Google Scholar 

  17. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  18. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).

    Article  CAS  Google Scholar 

  19. J.-W. Jiang and Y.-P. Zhou, ArXiv:1704.03147 (2017).

  20. W. Huang, H. Da, and G. Liang, J. Appl. Phys. 113, 104304 (2013).

    Article  Google Scholar 

  21. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  Google Scholar 

  22. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

  23. S. Izrailev et al., in Lecture Notes in Computational Molecular Dynamics: Challenges, Methods, Ideas, edited by P. Deuflhard, J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  24. P. Manimunda, Y. Nakanishi, Y. M. Jaques, S. Susarla, C. F. Woellner, S. Bhowmick, S. A. S. Asif, D. S. Galvao, C. S. Tiwary, and P. M. Ajayan, 2D Mater. 4, 45005 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaques, Y.M., Manimunda, P., Nakanishi, Y. et al. Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2. MRS Advances 3, 373–378 (2018). https://doi.org/10.1557/adv.2018.246

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.246

Navigation